# Glass transition temperature and critical properties

#### R.F. Fedors

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91003

In a preceding paper it was shown that for high molecular weight polymers, the volume of the repeating unit at  $T_g$  is proportional to the total free space defined as  $V_c - V_0$  where  $V_c$  is the volume of the repeating unit at the critical temperature and  $V_0$  is the volume of the repeating unit at absolute zero. Here it will be demonstrated that this proportionality is also true for a host of low molecular weight liquids. In addition, an empirical method of estimating  $T_c$  for a high molecular weight polymer is proposed which provides values of  $T_c$  which are consistent with those for low molecular weight liquids.

## INTRODUCTION

In a preceding paper,<sup>1</sup> it was shown that the volume of the repeating unit of a polymer at the glass transition temperature,  $V_g$ , is proportional to the total free space defined as  $V_c-V_0$  where  $V_c$  is the hypothetical volume of the repeating unit at the critical temperature and  $V_0$  is the hypothetical volume at absolute zero. Both of these volumes are estimated from a knowledge of the chemical structure and tables of additive atomic and group contribution,<sup>1,2</sup> and involves the assumption that a given atom or group of atoms makes a fixed contribution to the volume of the liquid. Specially, it was shown that:

$$\frac{V_g}{V_c - V_0} = K \tag{1}$$

where K had the value 0.369 with a standard deviation of 0.0178 for 28 polymers<sup>3</sup> with glass transition temperatures ranging from 140 to 480 K. We would now like to report that equation (1) is also applicable to simple, low molecular weight liquids and in addition to define a new quantity, the hypothetical critical temperature of a polymer.

### **RESULTS AND DISCUSSION**

In calculating the value of K, Sugden's atomic and group contributions<sup>2</sup> were used to estimate  $V_0$  and the atomic and group contributions from ref 1 were used to estimate  $V_c$ . For many liquids, the value of  $V_g$  (or the density at  $T_g$ ) was not reported. Accordingly, in these instances we estimated  $V_g$  using Sugden's equation which is given by:<sup>3</sup>

$$V = \frac{V_0}{(1 - T/T_c)^{0.3}}$$
(2)

By substituting  $T_g$  for T and estimating  $V_0$  from the additive contributions we were able to estimate  $V_g$ . Equation (2) is similar to the Goldhammer equation,<sup>4</sup> but Sugden<sup>3</sup> has shown that equation (2) provides a better fit to temperature-density (or volume) data than the Goldhammer equation.

For high molecular weight polymers, there are no established methods for estimating the critical temperature or for that matter, that a  $T_c$  even exists. On the other hand, concepts like the energy of vaporization have been applied to polymers in order to define the very useful solubility parameter which can be used in conjunction with suitable theory to predict events such as solubility and surface tension.<sup>5</sup> The energy of vaporization of a polymer has never been directly measured; its value is estimated indirectly using measurements of equilibrium swelling or intrinsic viscosity in a variety of solvents for example.<sup>5</sup>

If we differentiate equation (2) with respect to temperature, the following equation applicable to the liquid at  $T_g$  is obtained:

$$\frac{0.3 V_0}{\beta_1 T_g M} = \frac{(1 - T_r)^{1.3}}{T_r}$$
(3)

where  $\beta_1$  is the slope of the specific volume-temperature response of the liquid at  $T_g$ , M is the molecular weight of the liquid,  $V_0$  is the molar volume at T = 0 and  $T_r$  is the ratio  $T_g/T_c$ . For high molecular weight polymers, both Mand  $V_0$  can be taken equal to the molecular weight and molar volume of the repeating unit, respectively. The quantity on the left hand side of equation (3) can be calculated if the experimental values of  $\beta_1$  and  $T_g$  are available and hence estimates of  $T_r = T_g/T_c$  can be obtained. It is convenient to do this graphically by assigning values to  $T_r$  and calculating the appropriate values of  $0.3 V_0/\beta_1 T_g M$ and plotting the results. When values of  $0.3 V_0/\beta_1 T_g M$  are obtained using direct experimental data, these together with the plot will provide ready values for  $T_r$ .

We have taken the  $\beta_1$  and  $T_g$  data for a variety of polymers published by Sharma, Mandelkern and Stehling<sup>6</sup> and have estimated both  $T_r$  and  $T_c$  in this manner and the results are given in *Table 1*. The  $T_c$  values for these polymers range from a low value of 645 K for polypropylene to a high value of 1129 K for poly(2-hydroxyl propyl methacrylate).

Although it may seem strange to consider critical temperatures of high molecular weight polymers, there is strong empirical evidence that  $T_c$  remains finite in the limit of infinite molecular weight. Based on theoretical considerations of Kurata and Isida,<sup>6</sup> Kreglewski<sup>7</sup> and Zowlinski and

<sup>\*</sup>This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract number NAS7-100 sponsored by the National Aeronautics and Space Administration.

### Glass transition temperature and critical properties: R.F. Fedors

| Table 1 | Selected | properties of | f various | polymers |
|---------|----------|---------------|-----------|----------|
|---------|----------|---------------|-----------|----------|

| Polymer                                       | <i>т<sub>g</sub></i> (К) | $\beta_1 \times 10^4$ (cm <sup>3</sup> /deg.) | Tr    | <i>Т<sub>с</sub></i> (К) | γ calc.<br>(dyne/cm) | γ expt.<br>(dyne/cm) |
|-----------------------------------------------|--------------------------|-----------------------------------------------|-------|--------------------------|----------------------|----------------------|
| Polyethylene                                  | 140                      | 5.31                                          | 0.185 | 757                      | 32.2                 | 31                   |
| Natural rubber                                | 201                      | 6.02                                          | 0.270 | 744                      | 29.4                 |                      |
| Polyisobutylene                               | 202                      | 6.00                                          | 0.263 | 768                      | 29.4                 | 33.6                 |
| Poly(methyl acrylate)                         | 282                      | 5.60                                          | 0.385 | 733                      | 37.1                 | 41                   |
| Poly(vinyl acetate)                           | 302                      | 5.98                                          | 0.414 | 730                      | 37.0                 | 36                   |
| Poly(4-methyl pentene-1)                      | 302                      | 7.61                                          | 0.390 | 774                      | 28.9                 |                      |
| Polystyrene                                   | 373                      | 5.50                                          | 0.412 | 905                      | 37.9                 | 33                   |
| Poly(methyl methacrylate)                     | 378                      | 4.6                                           | 0.394 | 959                      | 40.1                 | 39                   |
| Poly(ethyl methacrylate)                      | 337                      | 5.40                                          | 0.394 | 853                      | 37.1                 | 33                   |
| Poly(propyl methacrylate)                     | 308                      | 5.80                                          | 0.384 | 802                      | 35.3                 |                      |
| Poly(n-butyl methacrylate)                    | 291                      | 6.00                                          | 0.374 | 778                      | 34.3                 | 32                   |
| Poly(n-hexyl methacrylate)                    | 268                      | 6.80                                          | 0.374 | 718                      | 31.9                 |                      |
| Poly (n-octyl methacrylate)                   | 253                      | 6.0                                           | 0.333 | 760                      | 33.3                 |                      |
| Poly(n-dodecyl methacrylate)                  | 208                      | 6.8                                           | 0.312 | 667                      | 29.6                 |                      |
| Poly (sec-butyl methacrylate)                 | 330                      | 5.55                                          | 0.384 | 869                      | 35.4                 |                      |
| Poly(iso-butyl methacrylate)                  | 327                      | 5.85                                          | 0.393 | 832                      | 34.4                 |                      |
| Poly(tert-buryl methacrylate)                 | 355                      | 6.30                                          | 0.427 | 831                      | 31.4                 |                      |
| Poly(methyl vinyl ether)                      | 251                      | 6.45                                          | 0.360 | 697                      | 32.2                 | 29                   |
| Poly (ethyl vinyl ether)                      | 240                      | 7.26                                          | 0.366 | 656                      | 30.0                 |                      |
| Poly(isopropyl vinyl ether)                   | 261                      | 6.69                                          | 0.360 | 725                      | 30.3                 |                      |
| Poly(n-butyl vinyl ether)                     | 217                      | 7.26                                          | 0.336 | 646                      | 29.1                 |                      |
| Poly(isobutyl vinyl ether)                    | 251                      | 6.78                                          | 0.352 | 713                      | 30.0                 |                      |
| Poly(sec-butyl vinyl ether)                   | 241                      | 6.36                                          | 0.330 | 730                      | 30.6                 |                      |
| Poly(n-hexyl vinyl ether)                     | 199                      | 6.66                                          | 0.296 | 672                      | 29.9                 |                      |
| Poly(2-hydroxyl ethyl methacrylate)           | 359                      | 3.78                                          | 0.330 | 1088                     | 46.5                 |                      |
| Poly(2-hydroxyl propyl methacrylate)          | 346                      | 3.60                                          | 0.309 | 1129                     | 46.3                 |                      |
| Poly(2-methoxyl ethyl methacrylate)           | 293                      | 4.95                                          | 0.341 | 859                      | 46.4                 |                      |
| Poly(trifluoro chloro ethylene)               | 325                      | 2.51                                          | 0.347 | 937                      | 44.6                 | 31                   |
| Poly(propylene)                               | 258                      | 9.40                                          | 0.400 | 645                      | 2.54                 | 29                   |
| Poly(α-methyl styrene)                        | 453                      | 5.40                                          | 0.442 | 1025                     | 41.9                 |                      |
| Poly (ethylene terephthalate)                 | 337                      | 4.50                                          | 0.400 | 843                      | 47.3                 | 43                   |
| Poly (2, 6-dimethyl, 1, 4-phenylene<br>oxide) | 480                      | 5.13                                          | 0.456 | 1053                     | 44.4                 |                      |
| Poly(piperlide acrylate)                      | 381                      | 4.50                                          | 0.393 | 970                      | 47.9                 |                      |
| Poly (morpholide acrylate)                    | 418                      | 4.40                                          | 0.449 | 931                      | 40.4                 |                      |
| Polybutadiene                                 | 188                      | 7.80                                          | 0.302 | 623                      | 27.1                 | 32                   |

Kreglewski<sup>8</sup> found that the  $T_c$  dependence on molecular weight of n-alkanes could be well described by an equation of the form:

$$\log(961 - T_c) = 2.95597 - 0.090570 \,m^{2/3} \tag{4}$$

. ...

Here *m* is the number of carbon atoms in the alkane. When  $m \rightarrow \infty$ , equation (4) indicates that a limiting  $T_c$  of 961 K is reached, i.e. 961 K is the  $T_c$  value of high molecular weight polyethylene. Kreglewski<sup>7</sup> also observed that the same limiting  $T_c = 961$  K is also applicable to n-alkyl derivatives such as the 1-mono-olefins, n-alkyl cyclohexanes and the n-alkylbenzenes. Although the form of equation (4) was found to not be applicable to branched alkanes or alkyl derivatives in general, we can still reasonably expect the existence of a limiting  $T_c$  for high molecular weight liquids.

In order to determine how  $T_c$  depends on the molecular weight of polymeric liquids, we have taken the data of both Fox and Flory<sup>9</sup> and Ueberreiter and Kanig<sup>10</sup> for the dependence of  $T_g$  on M for fractionated polystyrene samples. The relevant data are tabulated in Table 2. The data of Fox and Flory show a slight increase in  $T_c$  at low molecular weight which levels out at a molecular weight of about 3000 g/mol. The data of Ueberreiter and Kanig show a definite increase in  $T_c$  at low molecular weight and a levelling-off at a molecular weight of also about 3000 g/mol. Thus, this data is consistent with the behaviour observed with the low molecular weight n-alkanes. It is interesting to note that the lowest molecular weight material used by Ueberreiter and Kanig was stated to be the dimer of polystyrene; for this material,  $T_c$  as estimated from  $T_g$  and  $\beta_1$ data is 625 K. While there are apparently no experimental data for  $T_c$  for styrene dimer, the experimentally observed

 $T_c$  for ethylbenzene is 617 K.<sup>11</sup>

For the polymeric materials listed in *Table 1*, the value of  $T_r$  ranges from a low of 0.185 for polyethylene, to a high of 0.456 for poly (2, 6-dimethyl-1, 4-phenylene oxide); however, most values tend to cluster in the range 0.3-0.4. The average value is 0.363 with a standard deviation of 0.0565. If we use this average value to represent all polymers, then from equation (3), it can be shown that:

$$\alpha_1 T_g = \frac{0.3}{T_c/T_g(1 - T_g/T_c)} = 0.171$$
(5)

where  $\alpha_1$  is  $(1/V)(\partial V/\partial T)$ . A similar relationship with a numerical value of 0.164 was proposed by Simha and Boyer.<sup>12</sup> This agreement indicates that equation (2), and therefore equation (3) is consistent with experimental data. Also shown in the Table are calculated and experimentally measured values of the surface tension; the calculation was carried out as follows. The surface tension,  $\gamma$ , can be estimated by the use of atomic and group contributions to the parachor [P], as pointed out by Sugden,<sup>13</sup> i.e.:

$$\gamma = \frac{[P]^4}{V} \tag{6}$$

Table 2 Dependence of  $T_g$  on M for polystyrene

| M x 10 <sup>-3</sup><br>(g/mol)     | <i>Т<sub>g</sub></i> (К) | $\beta_1 \times 10^4$ (cm <sup>3</sup> /deg.) | 1 <sub>r</sub> | / <sub>C</sub> (K) |  |  |  |  |
|-------------------------------------|--------------------------|-----------------------------------------------|----------------|--------------------|--|--|--|--|
| Data of Fox and Flory <sup>24</sup> |                          |                                               |                |                    |  |  |  |  |
| 1.675                               | 313                      | 5.3                                           | 0.365          | 857                |  |  |  |  |
| 2.085                               | 326                      | 5.5                                           | 0.382          | 853                |  |  |  |  |
| 2.60                                | 335                      | 6.0                                           | 0.406          | 825                |  |  |  |  |
| 3.04                                | 338                      | 5.5                                           | 0.390          | 867                |  |  |  |  |
| 3.59                                | 348                      | 5.1                                           | 0.380          | 916                |  |  |  |  |
| 4.98                                | 351                      | 5,5                                           | 0.398          | 882                |  |  |  |  |
| 6.65                                | 350                      | 5.6                                           | 0.400          | 875                |  |  |  |  |
| 13.3                                | 359                      | 5.7                                           | 0.411          | 873                |  |  |  |  |
| 19.3                                | 362                      | 5.7                                           | 0.413          | 877                |  |  |  |  |
| 85.0                                | 373                      | 5.0                                           | 0.390          | 956                |  |  |  |  |
| Data of Uebe                        | rreiter and Ka           | anig <sup>25</sup>                            |                |                    |  |  |  |  |
| 0.21                                | 195                      | 7.5                                           | 0.312          | 625                |  |  |  |  |
| 0.32                                | 233                      | 6.53                                          | 0.329          | 708                |  |  |  |  |
| 0.34                                | 228                      | 6.56                                          | 0.327          | 697                |  |  |  |  |
| 0.43                                | 248                      | 6.24                                          | 0.337          | 736                |  |  |  |  |
| 0.72                                | 292                      | 6.05                                          | 0.370          | 789                |  |  |  |  |
| 0.84                                | 284                      | 5.81                                          | 0.357          | 796                |  |  |  |  |
| 1.25                                | 311                      | 5.66                                          | 0.374          | 831                |  |  |  |  |
| 2.60                                | 336                      | 5.64                                          | 0.392          | 857                |  |  |  |  |
| 4.68                                | 353                      | 5.68                                          | 0.404          | 874                |  |  |  |  |
| 8.42                                | 360                      | 5.58                                          | 0.417          | 863                |  |  |  |  |
| 14.5                                | 360                      | 5.52                                          | 0.404          | 891                |  |  |  |  |
| 25.2                                | 369                      | 5.49                                          | 0.409          | 902                |  |  |  |  |
| 30.4                                | 362                      | 5.55                                          | 0.407          | 889                |  |  |  |  |
| 31.10                               | 364                      | 5.69                                          | 0.414          | 87 <b>9</b>        |  |  |  |  |
| 41.6                                | 370                      | 5.41                                          | 0.406          | 911                |  |  |  |  |
| 93.6                                | 371                      | 5.47                                          | 0.410          | 904                |  |  |  |  |

Using equation (1) to estimate the volume we have:

$$\gamma = \frac{[P]^4}{V_0} (1 - T_r)^{1.2} \tag{7}$$

which contains two quantities [P] and  $V_0$  whose values can be estimated from additive atomic and group contributions as well as the critical temperature. Using the  $T_c$  values estimated from  $T_g$  and  $\beta_1$  values as well as the appropriate values of [P] (ref 14) and  $V_0$  the values of  $\gamma$  shown in *Table 2* have been calculated. Also shown are values of  $\gamma$ obtained experimentally and as may be seen, the calculated and experimental values are reasonably close. Thus, using  $T_c$  of a polymer in conjunction with equations which are known to apply to low molecular weight liquids, reasonable values of  $\gamma$  are calculable.

Finally, we may note that  $T_R$  appears to be a function of  $T_g$  for both low molecular weight liquids and polymers as well. Figure 1 shows  $T_R$  as a function of  $T_g$  for all the entries in Table 1, as well as for low molecular weight liquids not reported here. As may be seen, there is a rough correlation between these two parameters for both high and low molecular weight liquids. We should note that the behaviour of the low molecular weight liquids where  $T_c$  was obtained from measured data or estimated using a reliable method and that of the high molecular weight polymers where  $T_c$  was estimated indirectly all fall roughly on a common curve. This implies that our estimates of  $T_c$  for high molecular weight polymers are consistent with  $T_c$  values for low molecular weight liquids which have been measured experimentally.

#### REFERENCES

- .....

- 1 Fedors, R.F. J Polym Sci (B) 1973, 11, 767
- 2 Sugden, S.J. J Chem Soc 1927 p 1786



Figure 1 Dependence of  $T_r$  on  $T_g$  for both low molecular weight liquids (filled circles) and for high molecular weight polymers (open circles). Point number 1 is methane and point number 2 is n-tetrahexacontane

- 3 Sugden, S.J. J Chem Soc 1927 p 1780
- 4 Goldhammer, D.A. Z Phys Chem 1910, 71, 577
- 5 Gordon, J.L. 'Cohesive-Energy Density' in Encyclopedia of Polymer Science and Technology, Vol 3, New York, Wiley, 1965, p 853
- 6 Sharma, S.C., Mandelkern, L. and Stehling, F.C. J Polymer Sci (B) 1972, 10, 345
- 7 Kurata, M. and Isida, J. J Chem Phys 1955, 23, 1126
- 8 Kreglewski, A. and Zwolinski, B.J. J Phys Chem 1961, 65, 1050
- 9 Kreglewski, A. Bull Acad Polon Soc, Ser Sci Chem 1961, 9, 163
- 10 Fox, T.G. and Flory, P.J. J Appl Phys 1950, 21, 581; Fox, T.G. and Flory, P.J. J Polym Sci 1954, 14, 315
- 11 Ueberreiter, K. and Kanig, G. J Colloid Sci 1952, 7, 569
- Kudchadker, A.P., Alani, G.H. and Zwolinski, B.J. Chem Rev 1968, 68, 659
- 13 Simka, R. and Boyer, R.F. J Chem Phys 1962, 37, 1002
- 14 Sugden, S.J. J Chem Soc 1924, p 1177
- 15 Quayle, O.R. Chem Rev 1953, 53, 439